低速交通によるコミュニティデザイン ~高齢化社会を支える街路空間再配分に関する研究~

Low-Speed Transport and Community Design: Research on the Reprioritization of Street Space for An Ageing Society

村上 迅*

By Jin MURAKAMI

1. 背景

近年、我が国における公共政策と社会経済のあり 方は、高齢化を抜きには語れない。実際に、日本の 65 歳以上人口の構成比率は、2010 年時点で 22.5% を占め、2050年には35.7%に達すると予想されて いる 1)。これらの人口動態は、少子化や外国人労働 者受け入れの問題にも影響を受けるものではあるが、 高齢化が現在と将来の社会を構成する全年齢層の国 民が直面する長期的かつ抜本的な課題であることを 示している。

高齢化対策は、交通・都市計画の分野においても 重点施策の一つに挙げられる。特に、日本や先進諸 国がこれまで歩んできた自動車を中心とした生活様 式や交通施策は、増加する経済負担や環境負荷、交 通事故の観点からも、高齢化社会にとって望ましい 方向性とは言い難い。公共交通を中心とした集約型 都市構造もしくはコンパクトシティの形成を目指し、 各種関連制度の整備が検討されているが²⁾、郊外部 や地方部においては、自治体の財政状況や運営の採 算性の観点から、公共交通サービスだけで高齢者の モビリティニーズを満たすのは難しい。

そこで、高齢化社会を支えるモビリティオプショ ンの一つとして、低速交通モードの導入に注目が集 まっている。低速交通については、様々な技術的分 類が存在するが、ここでは米国を中心に定義・活用 されているネイバーフッド・エレクトリック・ビー クル (Neighborhood Electric Vehicle: NEV) につ いて言及する。

NEV の車両分類についても国や州・地域によっ て様々ではあるが、一般的には政府当局が制限速度 や安全基準を定め公道を走ることが許可されている 「ゴルフカート」の総称である³⁾ (写真 – 1)。Pike Research のレポート⁴⁾ によると、世界の NEV 年 間販売台数は、2011年時点で約3万台以上を数える。 今後も北米、欧州、アジアを中心に年間約6.6%の ペースで売り上げを伸ばし、2017年までに5万台 を突破し、路上を走る総車両数は約69万台に達す ると見込まれている。

写真-1 ネイバーフッド・エレクトリック・ビークル

高齢化と NEV 市場の急速な拡大にあわせて、交 通インフラ整備や都市計画の側では、具体的にどの ような対応が求められるのか、海外(特に米国)の 導入事例から理解を深める必要がある。

2. NEV に関する米国の既存研究・調査

高齢者のモビリティについては、米国においても 重要な社会問題・政策課題になりつつあり、様々な 視点で研究・調査のアジェンダが提示されている。 例えば、TRB の高齢化社会における交通に関する 論文・講演集 5) では、高齢者の自家用車への依存 度の高さ、高齢化に関わる交通問題の郊外部・地方 部への集中、高齢者の交通需要予測や事故対策の難 しさなどが指摘され、様々な状況を考慮した順応性 の高い交通環境設計の重要性が強調されている。ま

た、Bailey のレポート⁶⁾ は、自動車運転免許をも たない地方部の交通弱者としての高齢者が、社会活 動に参加する機会が減っている現状を示し、公共交 通を中心とした土地利用計画と街路設計の改良を推 奨している。一方、Coughlin⁷⁾ は、戦後ベビーブー マーの所得水準と教育レベルの高さ、医療サービス の向上によるアクティブな高齢化社会の到来を予見 し、新しい交通・コミュニケーション技術を導入し た民間主導のコミュニティ開発に期待をよせている。

実際に、NEV の導入したリタイアメント・コミュ ニティの民間不動産開発の先進事例は、米国のフロ リダ州やカリフォルニア州などの気候が温暖な地域 に多くみられる。しかし、入居条件を高齢者に限定 し世代間交流がないことや高所得な白人高齢者を中 心に排他的なコミュニティを形成していることが多 く、社会的な評価は必ずしも高いものではない⁸⁾。 また、リタイアメント・コミュニティの不動産開発 と NEV の販売市場が拡大する一方で、それらに関 する学術的な研究はまだ進められておらず、既存調 査の内容は、車両の技術的な優位性⁹⁾、費用面での 比較検討¹⁰⁾、個々の道路設計要素の紹介¹¹⁾ にとど まっている。つまり、我が国の政策・制度設計の参 考になるような、体系的かつ具体的な交通計画策定・ コミュニティ空間設計の現状把握には至っていない といえる。

3. 研究手法

本研究は、高齢コミュニティのモビリティオプ ションとして NEV を導入した場合の交通計画・空 間設計及び開発・管理手法を把握するために、海外 の先進事例の調査・分析を行った。具体的には、 (1) 先進事例調査と(2) コミュニティ形成と空間 設計に関する数値分析の2部から構成される研究と なっている。

(1) 先進事例調査

本研究は、まず、カリフォルニア州リンカーン市 の NEV 交通計画を米国の先進事例として取り扱う。 次に、香港のランタオ島にあるディスカバリー・ベ イの不動産開発を、アジアの先進事例として取り上 げる。この対比的な2つの先進事例について、文献 収集、専門家・関係者へのインタビュー及び現地踏 査により得られた情報から、①交通計画のコンセプ

ト (計画のねらい、計画の特徴や位置付け)、②街 路や駐車場における道路構造や交通規制、③インフ ラ整備手法などの現状と NEV 導入都市の課題を明 らかにする。

(2) コミュニティ形成と空間設計に関する数値分析

個別の先進事例調査に加え、横断的な数値分析を 行い、より包括的な理解に努める。既存研究や調査 レポート、政府の公式ホームページから、米国の代 表的な NEV 導入事例(もしくは導入検討事例)を 20 の市町村・開発に特定し、コミュニティ形成と 空間設計の特性を示すような数値をそれぞれの事例 ついて計算し、比較する。

a)コミュニティ形成に関する数値

米国国勢調査局が提供する人口及び住宅センサス 2010 とアメリカン・コミュニティ・サーベイ 2009-2012 の調査結果 12) から、2010 年の人口、人口密度、 2000年からの人口増加率、65歳以上の人口比率、 白人の人口比率、世帯平均人数、2012年の世帯収 入の中間値、居住費用の月額、持家率と空家率、労 働者人口とその比率、自家用車通勤の比率、在宅勤 務者の比率、居住地区内勤務者の比率、平均通勤時 間、住民1,000人に対する自家用車台数の数値を事 例ごとに再集計した。香港の事例についても、香港 センサス 2011¹³⁾ からほぼ全ての項目について同様 の数値情報を再集計することができた。

b)空間設計に関する数値

米国国勢調査局の人口及び住宅センサス 2010 の 結果とあわせて提供されている ArcGIS シェイプ ファイル ¹⁴⁾ から 20 の NEV 導入事例の対象地域を 設定する。この対象地域マップデータと ESRI が提 供する米国の街路レベルのマップデータ¹⁵⁾を ArcGIS 上で空間的に組み合わせ、高速道路の延長 密度、空港の有無と敷地面積、ゴルフコースの数・ 敷地面積・面積比率、公共サービス施設・学校・病 院・大きなショッピングプラザへ 1/2 マイル以内で アクセスできる地区の面積と面積比率、街路ネット ワークの総延長・リンク数・ノード数・最大直径の 数値を事例ごとに算出した。なお、香港の事例につ いては、街路レベルの公式デジタルマップデータの 入手が困難なため、オンライン・サテライト・イメー ジマップ手法を用いてオリジナルの ArcGIS シェイ プファイルを作成し、同様の数値を得ることができ た。また、グラフ理論を応用した街路網指標 16) も算 出した (付録参照)。

4. 先進事例調査の結果

(1) 米国リンカーン市の NEV 交通計画

a) 導入の経緯

リンカーン市は、サンフランシスコから約 150km、サクラメントから約 40km 北東に位置する 街である。2000年の人口は11,205人であったが、 中心市街地の南側に開発されたリタイアメント・コ ミュニティにより、2010年には42,819人にまで達 している¹²⁾。この民間住宅開発地区は、複数のゴ ルフ場を備えており、地区内を NEV で安全かつ快 適に移動できるようなゴルフコースパス、ストリー ト、コネクター、ストップなどの構成要素からなる 階層的道路システムが設計・整備された(図-1)。

図-1 民間住宅開発サンシティ・リンカーンヒル ズ地区内のゴルフカート循環計画 17)

ただし、連邦法で定められた制限速度と安全基準 により、高速道路を通過して中心市街地や空港など の地区外拠点へ NEV でアクセスすることはできな かった。これに対して、NEV による移動範囲を市 域全体に拡大し、中心市街地の経済を活性化させ、 市人口の20%以上を構成する白人高齢有権者の支 持を得ようと考えた共和党系の市長と市議会議員の 働きにより、「NEV 交通計画 2006¹⁸⁾」が自治体に より策定され、州政府に承認されることになった。

b) 交通計画の特徴

NEV 交通計画 2006 では、州高速道路 65 号を跨 ぎ市域全体を網羅する25の幹線道路・総延長約 77km が、NEV ルートに指定されている (図 - 2)。 なお、NEV用の道路標識や路面標示は、自転車用 のものをもとにデザインされている。また、ショッ ピングプラザやコミュニティセンターなど民間敷地 内の NEV 充電・駐車場施設については、原則的に 開発者が個別に設計・設置するものではあるが、具 体的な規準がこの交通計画の中で推奨されている。

図-2 リンカーン市の NEV 交通計画 2006¹⁸⁾

c)整備手法

この交通計画の実施にあたり、2005年1月カリ フォルニア州知事が関連議案 (Assembly Bill 2353) を承認している。これにより、NEV 専用 レーンが設置されることを条件として、規制速度 35mph 以上の道路での低速車両の走行が可能と なった (州高速警察との協議による)。また、高齢 者が普通運転免許を失効している場合などを考慮し て、NEV 限定運転免許の発行が可能となった(州 自動車陸運局との協議による)。

NEV 専用レーン設置などのインフラ整備につい ては、他のリタイアメント・コミュニティ開発で一 般的な高齢者対策プログラムや開発影響課金 (Impact Fee) ではなく、連邦政府交通省の混雑緩 和・大気質改善プログラム (CMAQ) を財源にして、 一回の小規模道路改良事業で80万ドル(8,000万 円)程度を費やして段階的に進められている。

d) 他の交通モードとの関係性

交通計画における NEV と他の交通モードとの棲 み分けは、3つの道路設計分類と街路空間配分の断 面図に表れている (表 - 1)。制限速度が 35mph 以

上の道路では、普通自動車と街路空間を共有せずに、 NEV 専用レーンが設置される。一方で、分離帯 (class I) や路肩(class II) に設置された専用レー ン内では、自転車と街路空間を共有する設計となっ ている。つまり、機能上は自転車に近い交通モード として考えられている。一方で「高齢共和党支持層 の NEV | に対する「若年民主党支持層の自転車 | といった社会政治的な背景があり、予算や空間配分 を巡って利用者が競合・対立する関係にある。実際 に、NEV 導入後に大きな交通事故は発生していな いが、自転車利用者との追い越し・運転マナーに関 する路上での口論が、整備事後評価の中で報告され ている19)。

表-1 道路設計分類と街路空間配分 18)

Classification	Description	Example Cross-Section				
Class I	用地が十分に確 保できるルートに 限定	Franci Lanca - State Marchartes				
Class II	制限速度が35 mph以上のルー トで適用	Candiscape Strip / Subreach NEV/ Travel Lane Travel Lane MEV/ Blac Lind Lind Lind Lind Lind Lind Lind Lind				
Class III	制限速度が35 mph以下のルー トであれば混在 を許容	Landscape Sticu / Schreid Fravel Shared Travel Parking (if appropriate) Landscape Shared Travel Shared Travel Parking Land (if appropriate)				

e) 影響と課題

リンカーン市の事後評価報告を受け、カリフォル ニア州の他の市町村でも NEV 交通計画モデルの導 入が検討されている。2013年の時点で、4件の NEV 交通計画が州政府に申請されている²⁰⁾。その 中でも、リバーサイド郡では、67万人以上が住む 約480kmの4市域を網羅するような前例のない規 模の NEV 専用道路システムが計画されている 21)。 一方で、アマドール郡3市からは、地元高齢者グ ループによるボランティアベースの調査・計画が申 請されている。高齢者のモビリティ確保が切実な課 題である地方部の小さな市町村ほど、専門的な NEV 交通計画を策定する予算もインフラ整備費補 助を正当化するだけの人口規模もないというのが現 状である。

(2) 香港ディスカバリー・ベイの民間開発

a) 導入の経緯

ディスカバリー・ベイ (DB) は、香港新界南西 部のランタオ島内に位置するリゾート型総合住宅開 発地区である。その開発計画は、香港政府が約 615ha の土地開発権を民間開発会社である香港興業 (HKR) に 6,150 万香港ドルで売却した 1976 年に遡 る 22)。開発コンセプトは、当初からゴルフ場や各 種レクリエーション施設を備えた高級コンドミニア ム、ショッピングプラザやホテルから構成される自 給型総合レジャー・コミュニティの創出であったが、 1980-2000 年代にかけて複数回の経済状況の変化と 設計レイアウトの変更を経て、現在に至っている。 2011年の時点で、12,258人13)が開発済みの約 152ha の街区内に居住している。香港の中では比較 的低密度な生活様式を提供しているため、白人労働 者とその家族が住民の25%以上を占める。一方、 65歳以上居住者の人口比率は7%以下であり、高 齢者を対象した開発でないことがわかる。しかしな がら、高密度な都市構造をもつアジアで、NEV 型 コミュニティ設計を民間ベースで実践した数少ない 事例といえる。

b) 開発の特徴

香港では、政府所有土地の開発権を取得した民間 開発者に、都市計画部局と調整しマスター・レイア ウト・プラン (MLP) を提出することを義務付け ている。つまり、この事例の施設配置計画及び道路 システム設計・運用管理指針は民間開発会社により 策定されている。DB 街区内のレイアウトを確認す ると、2つのショッピングプラザを活動拠点・交通 結節点とし、区域全体が街路ネットワークで繋がれ ていることがわかる (図-3)。区域全体もコンパ クトに設計され、公共サービス・学校・商業・不動 産管理施設が500m以内にある街区の面積比率は 100% であり、200m 以内の面積比率もそれぞれ 37.0%、15.5%、12.9%、75.3%となっているので、 NEV、バス、自転車や徒歩といった交通手段がコ ミュニティ内の移動に適している。

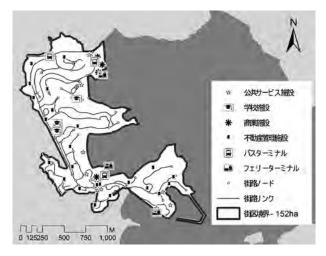


図-3 DB 街区内の施設配置と街路ネットワーク

c)他の交通モードとの関係性

自動車に依存しないライフスタイルがおくれるこ とがセールスポイントの開発であり、マイカーやタ クシーの開発区域内への乗り入れは禁止されている (商業用・公共車両は許可制)。区域外部への交通手 段は、不動産開発者の子会社が、香港島へのフェ リーを24時間運航しているほか、近隣鉄道駅や国 際空港へのバス路線が存在している。区域内につい ても、コミュニティバスサービスが子会社によって 提供されており、多くの住民の主要な移動手段と なっている。また自家用車の代わりに、(まだ電気 化されていない) 自家用ゴルフカートの利用が認め られているのが、この開発事例の特徴である。しか し、総車両数の上限が500台に設定されているため、 保有権を含む車両取引価格が高騰してしまい、利用 者は富裕層に限定されている。ゴルフカートの駐車 スペースは、不動産管理会社により住宅や各種コ ミュニティ施設敷地内で設置・管理されているが、 バス・フェリーターミナルでのパークアンドライド は原則禁止されている²³⁾。また、街路上に NEV 専 用レーンは設置されていないので、対向車線をはみ 出して低速車両を追い越すバスや商業車が観察され るが、交通量が少ないこともあり大きな事故は発生 していない。自転車については、基本的にゴルフ カートと混在はしないが、駐輪施設の利用方法や歩 行者に配慮した乗車禁止区域などが細かに設定され ている。

d)課題

DB は画期的な開発事例ではあるが、香港の住宅 市場の中で大きな人気を博しているわけではない。

実際、区域内の人口は2001-2011年の間に、20.6% 減少している (図-4)。こうした傾向は、20-40歳 の年齢層で顕著(24.5%減少)であり、コミュニ ティ全体としては僅かに高齢化が進んでいる。若年 労働者世代が定住しない理由としては、区域外への 通勤が不便であること、区域内にリクリエーション 施設が十分に整備されていないこと、家賃が比較的 高いことなどが考えられる。また、自動車の利用禁 止に加えて、区域内でのゴルフカートの車両数も制 限されているため、居住者のほとんどはバスサービ スに依存しなければならず、モビリティオプション が十分に提供されている状況とはいえない。

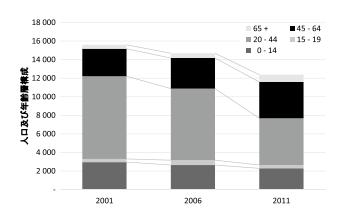


図-4 DB 区域内の人口及び年齢層構成の推移 14)

5. 数値分析の結果

(1) コミュニティ形成に関する数値

米国で代表的な 20 の NEV 導入・導入検討事例 について算出された数値を記述統計としてまとめ、 リンカーン市と香港 DB の数値と比較した (表 - 2)。 これによると、NEV が適用される人口規模や密度 は様々であるが、リンカーン市は平均的であり、 DB は小規模で高密度といえる。また、65 歳以上の 人口比率から、入居年齢制限のあるコミュニティと 年齢層が多様な開発があることもわかる。ただし、 多くの事例で、白人の構成比率が高く、所得水準や 住居費用も高いコミュニティが形成されていること が数値に表れている。住居に関しては、比較的に持 家率が高い傾向にあるが、別荘として開発されてい る場合・高齢家主が死去してしまう場合も多く、そ うしたコミュニティでは空家率が高い。在宅・地元 勤務者の割合もやや高めではあるが、通勤手段は自

動車に依存しているコミュニティがほとんどであり、 DB のようにマイカーを完全に排除している NEV 導入事例は米国では稀といえる。

表-2 コミュニティ形成に関する記述統計と事例比較

数值	最小値	最大値	平均値 標準偏差		リンカーン	DB
人口	138	303,871	52,874	77,995	42,819	12,383
人口増加率%	-22	517	64	129	282	-21
人口密度 人km2	85	3,572	923	782	821	8,147
年齡中間值	29	76	44	12	41	40
65歳以上%	0	84	21	21	24	6
白人 %	42	100	78	18	72	26
世帯平均人数	2	4	3	1	2	3
世帯収入中間値	33,262	91,349	63,540	18,540	72,921	89,700
住居費用 US \$/月	471	2,721	1,386	570	1,708	1,357
持家率 %	26	97	64	16	80	56
空家率 %	4	73	17	17	6	NA
労働者 %	10	58	42	13	36	54
自動車通勤 %	20	96	81	19	87	0
在宅勤務 %	0	31	8	7	9	23
地元勤務 %	16	94	42	21	26	39
平均通勤時間 分	10	35	25	7	28	NA
自動車台数/千人	101	583	412	120	362	0

(2) 空間設計に関する数値

空間設計特性についても、記述統計としてまとめ、 数値を比較した (表 - 3)。米国のほとんどの事例 では、高速道路が通過しているので、リンカーン市 のような NEV 専用レーン設置の調整が必要になる と考えられる。また、いくつかの事例では地方空港 を有しているので、ターミナルでの結節点設計も大 切である。特筆すべきは、20のうち14の事例が1 つ以上のゴルフ場を有している点である。つまり、 NEV の導入コミュニティはゴルフ場併設の民間不 動産開発がベースになっていることが多いといえる。 NEV による移動が有利な 0.5 マイル以内に各種施 設がある面積の比率は、多くの事例で高いものでは ない。米国の多くの事例では、DBのようなコンパ クトで高密度な街区設計はされていないので、街路 を高密度に整備し、結節性を高め到達可能範囲を広 げるような道路設計であることが、街路網指標から 示唆される。

表-3 空間設計に関する記述統計と事例比較

DB	リンカーン	標準偏差	平均值	最大値	最小値	数值
1.52	52.14	53.22	51.95	211.04	0.81	面積 km2
0	273	401	336	1654	0	高速道路 m/km2
0.00	8.60	2.13	0.89	8.60	0.00	空港面積比 %
1	2	5.6	3.2	25	0	ゴルフ場数
7.15	6.23	6.02	3.55	20.51	0.00	ゴルフ場面積比 %
						0.5マイル内面積 %
100.00	5.84	25.15	18.44	100.00	0.00	公共サービス施設
100.00	0.00	5.90	2.22	26.24	0.00	病院施設
100.00	12.70	17.64	14.99	49.47	0.00	教育施設
100.00	0.00	3.81	2.56	10.32	0.00	ショッピング施設
8.42	7.67	2.44	7.34	11.77	2.42	街路密度 km/km2
97	3,097	3,614	3,112	14,599	44	街路リンク数
84	2,339	2,805	2,407	11,273	38	街路ノード数
						街路網指標
0.086	0.162	0.058	0.135	0.246	0.038	α
1.155	1.324	0.116	1.268	1.490	1.072	β
0.394	0.442	0.037	0.425	0.498	0.368	γ
7.417	27.728	19.456	26.168	79.723	4.283	п_
						-

N = 20

6. おわりに

白人社会の生活様式や住宅市場の特性を考慮する と、本稿で示された国際事例や数値分析の結果を もって、日本における高齢化対策の一環としての NEV 導入の是非を結論付けるのは難しい。しかし、 具体的な設計手法や導入課題には、参考にできる部 分も多く含まれている。この研究成果が、我が国の 高齢化社会を支える交通計画・コミュニティ空間設 計の一助になることを切に願う。

付 録

街路の連結性と網羅性の指標は、グラフ理論にもと づいて 16)、以下のように算出した。

$$a$$
 指標(連結性) = $\frac{e-v+p}{2v-5}$

β指標(連結性) =
$$\frac{e}{v}$$

$$\gamma$$
 指標(連結性) = $\frac{e}{3(v-2)}$

$$\Pi$$
指標(網羅性) = $\frac{\sum_{i} l_{i}}{D}$

ここで、eはリンク数、vはノード数、pはサブグラ フ数、 l_i はリンク長、Dは街路網最大直径とする。

参考文献

- 1) 国立社会保障・人口問題研究所:日本の将来推計 人口, 2002.
- 2) 中村英夫:コンパクトシティ形成に向けた国の取 り組み,交通工学, Vol.49, No.1, pp.91-96, 2014.
- 3) National Highway Traffic Safety Administration, US DOT: Federal Motor Vehicle Safety Standards, 1998.
- 4) Hurst, D. & Wheelock, C.: Neighborhood Electric Vehicles, Pike Research Report, 2011.
- 5) Transportation Research Board: Transportation in an Aging Society, A Decade of Experience, TRB Conference Proceedings 27, 2004.
- 6) Bailey, L.: Aging Americans: Stranded Without Options, Surface Transportation Policy Project, 2004.
- 7) Coughlin, J.: Longevity, Lifestyle, and Anticipating the New Demands of Aging on the Transportation System, Public Works Management & Policy, Vol.13, No.4, pp.301-311, 2009.
- 8) Blechman, A.D.: Leisureville Adventures in America's Retirement Utopias, 2008.
- 9) Brayer, R. et al.: Guidelines for the Establishment of a Model Neighborhood Electric Vehicle (NEV) Fleet, U.S. Department of Energy, 2006.
- 10) Arthur D. Little, Inc.: Demonstration of Neighborhood Electric Vehicles (NEVs), California Energy Commission, 2002.

- 11) Stein, A.G. et al.: Road Infrastructure for Neighbor Electric Vehicles, Transportation Research Record, Vol. 1444, pp.23-27, 1994.
- 12) U.S. Census Bureau: American FactFinder, 2014.
- 13) HKSAR Census and Statistics Department: 2011 Hong Kong Population Census, 2013.
- 14) U.S. Census Bureau: TIGER Products -Geography, 2013.
- 15) ESRI: U.S. Street Map CD-ROM, 2013.
- 16) Rodrigue, J.P. et al.: The Geography of Transport Systems, Second Edition. London, UK: Routledge, 2006.
- 17) Fehr & Peers: Twelve Bridges Golf Cart Transportation Plan, 2006.
- 18) City of Lincoln: NEV Transportation Plan Final Draft, 2006.
- 19) City of Lincoln: NEV Transportation Plan Evaluation, 2008.
- 20) U.S. Department of Energy: NEV Access to Roadways, 2013.
- 21) Urban Crossroads/Bennett Engineering Services: Western Riverside Council of Governments 4 -City NEV Transportation Plan, 2010.
- 22) HKSAR Audit Commission: Grant of Land at Discovery Bay and Yi Long Wan, 2004.
- 23) Discovery Bay Services Management Ltd.: Discovery Bay City Rules, 2010.